

Section 22b

Enhanced Formation Flying (JPL Algorithm)

Abstract

WHAT: Flight validation of <u>autonomous</u> navigation/formation

flying technology

WHY: Formation fly EO-1 with Landsat-7 to obtain co-

registered images for EO-1 camera validation

WHEN: Launch Nov. 2000, flight validation July-Sept. 2001

HOW: Use a simple algorithm that takes advantage of

onboard GPS positioning to determine orbital

maneuvers needed to maintain orbital formation

between EO-1 and Landsat-7

Formation Flying Description

Mission Technology Forum

Maximum Ground Track Difference Between EO-1 and LS-7 is ±3 km

Introduction

- Autonomous Navigation is defined as autonomously determining and controlling the orbit of a spacecraft
- ◆ Autonomous formation flying is a type of autonomous navigation
- Formation flying involves maintaining the translational and/or rotational states of two or more spacecraft
- Benefits of JPL Autonomous Navigation Algorithm:
 - Minimal memory and onboard processor requirements (<100kB RAM)
 - Simple, Relies on GPS Onboard Navigation Solutions (Position Only):
 - No numerical integration required
 - No navigation (Kalman) filtering required
 - Autonomous, Landsat-7 maneuvers are only routine data transmitted to EO-1
 - Applicable to many future Earth science missions
 - Reduced mission operations ground team effort and size

Autonomous Navigation Elements for JPL Algorithm

Onboard GPS Provides Good Positioning . . . but not Velocity

than Onboard GPS (unfiltered) Can Provide

Earth Observing-1

Another Way to Get Semimajor Axis (The JPL Algorithm)

$$a = a_0 + \dot{a}(t-t_0)$$
 where $\dot{a} = f(m_2)$

Landsat-7 Altitude Decay is Proportional to that of EO-1

$$\frac{\dot{a}_{\text{EO-1}}}{\dot{a}_{\text{LS-7}}} = \frac{C_{\text{D}} \frac{A}{m} \rho V^{2}}{C_{\text{D}} \frac{A}{m} \rho V^{2}} = \frac{\left(\frac{A}{m}\right)_{\text{EO-1}}}{\left(\frac{A}{m}\right)_{\text{LS-7}}}$$

where:

C_D = Coefficient of Drag

A = Area

m = mass

r = Atmospheric Density

V = Circular Velocity

Solar Activity Simulation

Conclusions

- Ground validations are complete using GPS telemetry data
- Flight validations will begin on July 18, 2001
- Benefits of autonomous navigation
 - Ground tracking network for navigation not required
 - Reduces mission operations ground team effort and size
 - Applicable to many future Earth science missions
- Benefits of the JPL algorithm:
 - Minimal memory and onboard processor requirements (<100kB RAM)
 - Simple, Relies on GPS Onboard Navigation Solutions (Position Only):
 - No numerical integration required
 - No navigation (Kalman) filtering required
 - Autonomous, Landsat-7 maneuvers are only routine data transmitted to EO-1